

Photogrammetry II Lecture 6: Two-dimensional coordinate transformation

Dr. Eng. Hassan Mohamed Hassan <u>Hassan.hussein@feng.bu.edu.eg</u> Geomatics Department

What you learn from this lecture

- 1. Introduction
- 2. Two-Dimensional Conformal Coordinate Transformation
- 3. Two-Dimensional Affine Coordinate Transformation

Introduction

Def. The procedure for converting from one coordinate system to another.

A problem frequently encountered in photogrammetric work is conversion from one rectangular coordinate system to another.

➤This is because photogrammetrists commonly determine coordinates of unknown points in convenient arbitrary rectangular coordinate systems.

➤The procedure requires that some Control points have their coordinates known (or measured) in both the arbitrary and the final coordinate systems.

Introduction

- GCP (Ground Control Point) -> only for solving equations.
- ICP (Independent Check Point) -> only for accuracy assessment

- A conformal transformation is one in which true shape is preserved after transformation.
- To perform a two-dimensional conformal coordinate transformation, it is necessary that coordinates of at least two points be known in both the arbitrary and final coordinate systems.
- If more than two control points are available, an improved solution may be obtained by applying the method of least squares.
- It consists of three basic steps:
- \succ (1) scale change,
- > (2) rotation,
- \succ (3) translation.

Step 1: Scale Change: $s = \frac{AB}{ab} = \frac{\sqrt{(E_{\rm B} - E_{\rm A})^2 + (N_{\rm B} - N_{\rm A})^2}}{\sqrt{(X_{\rm b} - X_{\rm a})^2 + (Y_{\rm b} - Y_{\rm a})^2}}$ $Y'_{C}\cos\theta_{\sim}$ Step 2: Rotation: $E'_{C} = X'_{C}\cos\theta - Y'_{C}\sin\theta \qquad \alpha = \tan^{-1}\left(\frac{X_{a} - X_{b}}{Y_{a} - Y_{b}}\right)$ $N'_C = X'_C \sin\theta - Y'_C \cos\theta \qquad \beta = \tan^{-1} \left(\frac{E_B - E_A}{N_A - N_B} \right)$ $Y_c \sin \theta$ $X'_C \cos \theta$ Step 3: Translation T_N $T_{r} = E_{A} - E_{A}' = E_{B} - E_{B}'$ $T_{N} = N_{A} - N_{A}' = N_{B} - N_{B}'$

> It is required to compute the coordinates of point C in the ground EN system.

Point	X	У	E	Ν
А	632.17	121.45	1100.64	1431.09
В	355.20	-642.07	1678.39	254.15
С	1304.81	596.37		

> Sol:

s

$$=\frac{\sqrt{(1678.39 - 1100.64)^2 + (254.15 - 1431.09)^2}}{\sqrt{(355.20 - 632.17)^2 + (-642.07 - 121.45)^2}}$$

$=\frac{1311.10}{812.20}=1.61425$							
Point	XS	ys					
А	1020.48	196.05					
В	573.38	-1036.46					
С	2106.29	962.69					

> Rot:

$$\tan \alpha = \frac{632.17 - 355.20}{121.45 + 642.07} = 0.362754 \qquad \alpha = 19.9384^{\circ}$$

$$\tan \beta = \frac{1678.39 - 1100.64}{1431.09 + 254.15} = 0.490892 \qquad \beta = 26.1460^{\circ}$$

 $\theta = 19.9384^{\circ} + 26.1460^{\circ} = 46.0845^{\circ}$

Point	Χ'cosθ	Y'sinθ	X'sinθ	Υ'cosθ	E	N
А	707.80	141.23	735.12	135.98	566.57	871.10
В	397.70	-746.63	413.04	-718.89	1144.32	-305.84
С	1460.92	693.49	1517.29	667.72	767.43	2185.01

> Trans:

$$T_{E} = E_{A} - E_{A}' = 1100.64 - 566.58 = 534.07$$

$$T_{N} = N_{A} - N_{A}' = 1431.09 - 871.10 = 559.99$$

$$E_{C} = 767.43 + 534.07 = 1301.49$$

$$N_{C} = 2185.01 + 559.99 = 2745.01$$

2D Conformal Coordinate Transformations With Redundancy

- In some instances, more than two control points are available with coordinates known in both the arbitrary and final systems.
- The least squares method has the additional advantages that mistakes in the coordinates may be detected and that the precision of the transformed coordinates may be obtained.
- Let points a = s cosθ and b = s sinθ

$$\begin{split} X_A a &- Y_A b + T_E = E_A + v_{E_A} \\ Y_A a + X_A b + T_N &= N_A + v_{N_A} \\ X_B a - Y_B b + T_E &= E_B + v_{E_B} \\ Y_B a + X_B b + T_N &= N_B + v_{N_B} \\ X_C a - Y_C b + T_E &= E_C + v_{E_C} \\ Y_C a + X_C b + T_N &= N_C + v_{N_C} \end{split}$$

$$_{6}A^{4}_{4}X^{1} = {}_{6}L^{1} + {}_{6}V^{1}$$

2D Conformal Coordinate Transformations With Redundancy

$${}_{6}A^{4} = \begin{bmatrix} X_{A} & -Y_{A} & 1 & 0 \\ Y_{A} & X_{A} & 0 & 1 \\ X_{B} & -Y_{B} & 1 & 0 \\ Y_{B} & X_{B} & 0 & 1 \\ X_{C} & -Y_{C} & 1 & 0 \\ Y_{C} & X_{C} & 0 & 1 \end{bmatrix} {}_{4}X^{1} = \begin{bmatrix} a \\ b \\ T_{E} \\ T_{N} \end{bmatrix} {}_{6}L^{1} = \begin{bmatrix} E_{A} \\ N_{A} \\ E_{B} \\ N_{B} \\ E_{C} \\ N_{C} \end{bmatrix} {}_{6}V^{1} = \begin{bmatrix} v_{E_{A}} \\ v_{N_{A}} \\ v_{E_{B}} \\ v_{E_{B}} \\ v_{N_{B}} \\ v_{E_{C}} \\ v_{N_{C}} \end{bmatrix} {}_{6}V^{1} = \begin{bmatrix} v_{E_{A}} \\ v_{N_{A}} \\ v_{E_{B}} \\ v_{E_{B}} \\ v_{E_{B}} \\ v_{E_{C}} \\ v_{E_{C}} \\ v_{N_{C}} \end{bmatrix} {}_{6}V^{1} = \begin{bmatrix} v_{E_{A}} \\ v_{E_{A}} \\ v_{E_{A}} \\ v_{E_{A}} \\ v_{E_{A}} \\ v_{E_{B}} \\ v_{E_{B}} \\ v_{E_{C}} \\ v_{E_{C}} \\ v_{E_{C}} \\ v_{E_{C}} \end{bmatrix} {}_{6}V^{1} = \begin{bmatrix} v_{E_{A}} \\ v_{E_{B}} \\ v_{E_{B}} \\ v_{E_{C}} \\ v_{E_{C}} \\ v_{E_{C}} \\ v_{E_{C}} \\ v_{E_{C}} \end{bmatrix} {}_{6}V^{1} = \begin{bmatrix} v_{E_{A}} \\ v_{E_{B}} \\ v_{E_{B}} \\ v_{E_{C}} \\ v_{E_{C}} \\ v_{E_{C}} \\ v_{E_{C}} \\ v_{E_{C}} \\ v_{E_{C}} \end{bmatrix} {}_{6}V^{1} = \begin{bmatrix} v_{E_{A}} \\ v_{E_{B}} \\ v_{E_{B}} \\ v_{E_{C}} \\ v_{E_{C}} \\ v_{E_{C}} \\ v_{E_{C}} \\ v_{E_{C}} \end{bmatrix} {}_{6}V^{1} = \begin{bmatrix} v_{E_{A}} \\ v_{E_{B}} \\ v_{E_{C}} \\ v_{E_{C}} \\ v_{E_{C}} \\ v_{E_{C}} \\ v_{E_{C}} \\ v_{E_{C}} \end{bmatrix} {}_{7}V^{2} + V^{2} +$$

- Its used to compensate for nonorthogonality (non perpendicularity or skewing) of the axis system.
- The affine transformation achieves these additional features by including two additional unknown parameters for a total of six.
- It preserves parallelity but not angles.
- four steps: (1) scale change in x and
 y, (2) correction for nonorthogonality,
 (3) rotation, and (4) translation.

> The basic formula:

$$X = T_X + s_x x \cos\theta + s_y y \frac{\sin(\varepsilon - \theta)}{\cos\varepsilon}$$
$$Y = T_Y + s_x x \sin\theta + s_y y \frac{\cos(\varepsilon - \theta)}{\cos\varepsilon}$$

$$a_{0} = T_{\chi} \qquad b_{0} = T_{\gamma}$$

$$a_{1} = s_{x} \cos \theta \qquad b_{1} = s_{x} \sin \theta$$

$$a_{2} = s_{y} \frac{\sin(\varepsilon - \theta)}{\cos \varepsilon} \qquad b_{2} = s_{y} \frac{\cos(\varepsilon - \theta)}{\cos \varepsilon}$$

It is required to compute the corrected coordinates of points 1, 2, and 3 by using the affine transformation.

Point	x	У	Хс	Yc	
А	228.170	129.730	112.995	0.034	
В	2.100	129.520	-113.006	0.005	
С	115.005	242.625	0.003	112.993	
D	115.274	16.574	-0.012	-113.000	
1	206.674	123.794			
2	198.365	132.856			
3	91.505	18.956			

> Sol:

 $112.995 + v_{X_4} = a_0 + 228.170a_1 + 129.730a_2$ $0.034 + v_{Y_A} = b_0 + 228.170b_1 + 129.730b_2$ $-113.006 + v_{X_p} = a_0 + 2.100a_1 + 129.520a_2$ $0.005 + v_{Y_p} = b_0 + 2.100b_1 + 129.520b_2$ $0.003 + v_{X_c} = a_0 + 115.005a_1 + 242.625a_2$ $112.993 + v_{Y_c} = b_0 + 115.005b_1 + 242.625b_2$ $-0.012 + v_{X_D} = a_0 + 115.274a_1 + 16.574a_2$ $-113.000 + v_{Y_D} = b_0 + 115.274b_1 + 16.574b_2$

> Sol:

₈ A ⁶	1 0 1 0 1 0 1 0	228.170 0 2.100 0 115.005 0 115.274 0	$129.730 \\ 0 \\ 129.520 \\ 0 \\ 242.625 \\ 0 \\ 16.574 \\ 0$	0 1 0 1 0 1 0 1	$0 \\ 228.170 \\ 0 \\ 2.100 \\ 0 \\ 115.005 \\ 0 \\ 115.274$	0 129.730 0 129.520 0 242.625 0 16.574	${}_{6}X^{1}\begin{bmatrix}a_{0}\\a_{1}\\a_{2}\\b_{0}\\b_{1}\\b_{2}\end{bmatrix}}{}_{8}L^{1} =$	112.995 0.034 -113.006 0.005 0.003 112.993 -0.012 -113.000	$_{8}V^{1} =$	v_{X_A} v_{Y_A} v_{X_B} v_{Y_B} v_{X_C} v_{Y_C} v_{X_D} v_{Y_D}	
l	0	0	0	1	115.274	16.574	L ⁰ 2_	[-113.000]	l	VYD	

> Sol:

$$X = \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ b_0 \\ b_1 \\ b_2 \end{bmatrix} = \begin{bmatrix} -115.270 \\ 0.999694 \\ 0.001256 \\ -129.479 \\ -0.000800 \\ 0.999742 \end{bmatrix} \qquad AX - L = V = \begin{bmatrix} v_{X_A} \\ v_{Y_A} \\ v_{X_B} \\ v_{Y_B} \\ v_{X_C} \\ v_{Y_C} \\ v_{Y_C} \\ v_{Y_D} \\ v_{Y_D} \end{bmatrix} = \begin{bmatrix} -0.0017 \\ 0.0012 \\ 0.0017 \\ -0.0012 \\ 0.0017 \\ -0.0012 \end{bmatrix}$$

> Sol:

 $X_1 = -115.270 + (0.999694)(206.674) + (0.001256)(123.794) = 91.496$ $Y_1 = -129.479 + (-0.000800)(206.674) + (0.999742)(123.794) = -5.882$ $X_2 = -115.270 + (0.999694)(198.365) + (0.001256)(132.856) = 83.201$ $Y_2 = -129.479 + (-0.000800)(198.365) + (0.999742)(132.856) = 3.184$ $X_{2} = -115.270 + (0.999694)(91.505) + (0.001256)(18.956) = -23.769$ $Y_{2} = -129.479 + (-0.000800)(91.505) + (0.999742)(18.956) = -110.601$

Supplementary files:

- https://www.youtube.com/watch?v=-usT7TBErB0
- https://www.youtube.com/watch?v=W_Vee4b 40Q&list=PL_7JGdDHiQ2lkQcdPq_Ndj4s0jD7ZAUrv
- Elements of Photogrammetry with Applications in GIS, Fourth Edition. Paul R. Wolf, Bon A. Dewitt, Benjamin E. Wilkinson, 2014 McGraw-Hill Education

Please don't use this presentation without getting a permeation from its original owner

Thanks

Dr.Eng. Hassan Mohamed