Photogrammetry II

Lecture 6: Two-dimensional coordinate transformation

Dr. Eng. Hassan Mohamed Hassan Hassan.hussein@feng.bu.edu.eg Geomatics Department

What you learn from this lecture

1. Introduction
2. Two-Dimensional Conformal Coordinate Transformation
3. Two-Dimensional Affine Coordinate Transformation

Introduction

$>$ Def. The procedure for converting from one coordinate system to another.
$>$ A problem frequently encountered in photogrammetric work is conversion from one rectangular coordinate system to another.
$>$ This is because photogrammetrists commonly determine coordinates of unknown points in convenient arbitrary rectangular coordinate systems.
$>$ The procedure requires that some Control points have their coordinates known (or measured) in both the arbitrary and the final coordinate systems.

Introduction

- GCP (Ground Control Point) -> only for solving equations

0 ICP (Independent Check Point) -> only for accuracy assessment

2D Conformal Coordinate Transformation

> A conformal transformation is one in which true shape is preserved after transformation.
> To perform a two-dimensional conformal coordinate transformation, it is necessary that coordinates of at least two points be known in both the arbitrary and final coordinate systems.
> If more than two control points are available, an improved solution may be obtained by applying the method of least squares.
> It consists of three basic steps:
$>$ (1) scale change,
$>$ (2) rotation,
$>(3)$ translation.

2D Conformal Coordinate Transformation

2D Conformal Coordinate Transformation

> Step 1: Scale Change:

$$
s=\frac{A B}{a b}=\frac{\sqrt{\left(E_{B}-E_{A}\right)^{2}+\left(N_{B}-N_{A}\right)^{2}}}{\sqrt{\left(X_{b}-X_{a}\right)^{2}+\left(Y_{b}-Y_{a}\right)^{2}}}
$$

> Step 2: Rotation:
$E_{C}^{\prime}=X_{C}^{\prime} \cos \theta-Y_{C}^{\prime} \sin \theta \quad \alpha=\tan ^{-1}\left(\frac{X_{a}-X_{b}}{Y_{a}-Y_{b}}\right)$
$N_{\mathrm{C}}^{\prime}=X_{\mathrm{C}}^{\prime} \sin \theta-Y_{\mathrm{C}}^{\prime} \cos \theta \quad \beta=\tan ^{-1}\left(\frac{E_{\mathrm{B}}-E_{A}}{N_{A}-N_{B}}\right)$
$>$ Step 3: Translation

$$
\begin{gathered}
T_{E}=E_{A}-E_{A}^{\prime}=E_{B}-E_{B}^{\prime} \\
T_{N}=N_{A}-N_{A}^{\prime}=N_{B}-N_{B}^{\prime}
\end{gathered}
$$

2D Conformal Coordinate Transformation

$>$ It is required to compute the coordinates of point C in the ground EN system.

Point	X	y	E	N
A	632.17	121.45	1100.64	1431.09
B	355.20	-642.07	1678.39	254.15
C	1304.81	596.37		

> Sol:

$$
\begin{aligned}
& s= \frac{\sqrt{(1678.39-1100.64)^{2}+(254.15-1431.09)^{2}}}{\sqrt{(355.20-632.17)^{2}+(-642.07-121.45)^{2}}} \\
&= \frac{1311.10}{812.20}=1.61425 \\
& \text { Point } \text { xs } \\
& \hline \text { A } \\
& \hline \text { B } 1020.48 \\
& \hline \text { C } 573.38 \\
& \hline
\end{aligned}
$$

2D Conformal Coordinate Transformation

> Trans:

$$
\begin{gathered}
T_{E}=E_{A}-E_{A}^{\prime}=1100.64-566.58=534.07 \\
T_{N}=N_{A}-N_{A}^{\prime}=1431.09-871.10=559.99 \\
E_{C}=767.43+534.07=1301.49 \\
N_{C}=2185.01+559.99=2745.01
\end{gathered}
$$

2D Conformal Coordinate Transformations With Redundancy

> In some instances, more than two control points are available with coordinates known in both the arbitrary and final systems.
> The least squares method has the additional advantages that mistakes in the coordinates may be detected and that the precision of the transformed coordinates may be obtained.
$>$ Let points $\mathrm{a}=\mathrm{s} \cos \theta$ and $\mathrm{b}=\mathrm{s}$ $\sin \theta$

$$
\begin{aligned}
& X_{A} a-Y_{A} b+T_{E}=E_{A}+v_{E_{A}} \\
& Y_{A} a+X_{A} b+T_{N}=N_{A}+v_{N_{A}} \\
& X_{B} a-Y_{B} b+T_{E}=E_{B}+v_{E_{B}} \\
& Y_{B} a+X_{B} b+T_{N}=N_{B}+v_{N_{B}} \\
& X_{C} a-Y_{C} b+T_{E}=E_{C}+v_{E_{C}} \\
& Y_{C} a+X_{C} b+T_{N}=N_{C}+v_{N_{C}}
\end{aligned}
$$

$$
{ }_{6} A^{4}{ }_{4} X^{1}=L^{1}+{ }_{6} V^{1}
$$

2D Conformal Coordinate Transformations With Redundancy

$$
{ }_{6} A^{4}=\left[\begin{array}{cccc}
X_{A} & -Y_{A} & 1 & 0 \\
Y_{A} & X_{A} & 0 & 1 \\
X_{B} & -Y_{B} & 1 & 0 \\
Y_{B} & X_{B} & 0 & 1 \\
X_{C} & -Y_{C} & 1 & 0 \\
Y_{C} & X_{C} & 0 & 1
\end{array}\right]{ }_{4} X^{1}=\left[\begin{array}{c}
a \\
b \\
T_{E} \\
T_{N}
\end{array}\right]
$$

$$
{ }_{6} L^{1}=\left[\begin{array}{c}
E_{A} \\
N_{A} \\
E_{B} \\
N_{B} \\
E_{C} \\
N_{C}
\end{array}\right]
$$

$$
{ }_{6} V^{1}=\left[\begin{array}{c}
v_{E_{A}} \\
v_{N_{A}} \\
v_{E_{B}} \\
v_{N_{B}} \\
v_{\mathrm{E}_{\mathrm{C}}} \\
v_{N_{\mathrm{C}}}
\end{array}\right]
$$

2D Affine Coordinate Transformation

$>$ Its used to compensate for nonorthogonality (non perpendicularity or skewing) of the axis system.
$>$ The affine transformation achieves these additional features by including two additional unknown parameters for a total of six.
$>$ It preserves parallelity but not
 angles.
$>$ four steps: (1) scale change in x and y, (2) correction for nonorthogonality, (3) rotation, and (4) translation.

2D Affine Coordinate Transformation

> The basic formula:

$$
\begin{aligned}
& X=T_{X}+s_{x} x \cos \theta+s_{y} y \frac{\sin (\varepsilon-\theta)}{\cos \varepsilon} \\
& Y=T_{Y}+s_{x} x \sin \theta+s_{y} y \frac{\cos (\varepsilon-\theta)}{\cos \varepsilon} \\
& a_{0}=T_{X} \\
& a_{1}=s_{x} \cos \theta \\
& a_{2}=s_{y} \frac{\sin (\varepsilon-\theta)}{\cos \varepsilon} \quad b_{0}=T_{Y} \\
& b_{1}=s_{x} \sin \theta \\
& b_{2}=s_{y} \frac{\cos (\varepsilon-\theta)}{\cos \varepsilon}
\end{aligned}
$$

2D Affine Coordinate Transformation

$>$ It is required to compute the corrected coordinates of points 1,2 , and 3 by using the affine transformation.

Point	\mathbf{x}	\mathbf{y}	Xc	Yc
A	228.170	129.730	112.995	0.034
B	2.100	129.520	-113.006	0.005
C	115.005	242.625	0.003	112.993
D	115.274	16.574	-0.012	-113.000
1	206.674	123.794		
2	198.365	132.856		
3	91.505	18.956		

2D Affine Coordinate Transformation

> Sol:

$$
\begin{aligned}
112.995+v_{X_{A}} & =a_{0}+228.170 a_{1}+129.730 a_{2} \\
0.034+v_{Y_{A}} & =b_{0}+228.170 b_{1}+129.730 b_{2} \\
-113.006+v_{X_{B}} & =a_{0}+2.100 a_{1}+129.520 a_{2} \\
0.005+v_{Y_{B}} & =b_{0}+2.100 b_{1}+129.520 b_{2} \quad A^{6}{ }_{6} X^{1}={ }_{8} L^{1}+V_{8}^{1} \\
0.003+v_{X_{C}} & =a_{0}+115.005 a_{1}+242.625 a_{2} \\
112.993+v_{Y_{C}} & =b_{0}+115.005 b_{1}+242.625 b_{2} \\
-0.012+v_{X_{D}} & =a_{0}+115.274 a_{1}+16.574 a_{2} \\
-113.000+v_{Y_{D}} & =b_{0}+115.274 b_{1}+16.574 b_{2}
\end{aligned}
$$

2D Affine Coordinate Transformation

> Sol:
${ }_{8} A^{A}\left[\begin{array}{cccccc}1 & 228.170 & 129.730 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 228.170 & 129.730 \\ 1 & 2.100 & 129.520 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 2.100 & 129.520 \\ 1 & 115.005 & 242.625 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 115.005 & 242.625 \\ 1 & 115.274 & 16.574 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 115.274 & 16.574\end{array}\right] \quad{ }_{6} X^{1}\left[\begin{array}{l}a_{0} \\ a_{1} \\ a_{2} \\ b_{0} \\ b_{1} \\ b_{2}\end{array}\right] \quad{ }_{8} \delta^{1}=\left[\begin{array}{r}112.995 \\ 0.034 \\ -113.006 \\ 0.005 \\ 0.003 \\ 112.993 \\ -0.012 \\ -113.000\end{array}\right] \quad{ }_{s} V^{1}=\left[\begin{array}{l}v_{X_{A}} \\ v_{Y_{A}} \\ v_{X_{B_{B}}} \\ v_{Y_{B}} \\ v_{X_{C}} \\ v_{Y_{C}} \\ v_{X_{D}} \\ v_{Y_{D}}\end{array}\right]$

2D Affine Coordinate Transformation

Sol:

$$
X=\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2} \\
b_{0} \\
b_{1} \\
b_{2}
\end{array}\right]=\left[\begin{array}{c}
-115.270 \\
0.999694 \\
0.001256 \\
-129.479 \\
-0.000800 \\
0.999742
\end{array}\right]
$$

$$
A X-L=V=\left[\begin{array}{l}
v_{X_{A}} \\
v_{Y_{A}} \\
v_{X_{B}} \\
v_{Y_{B}} \\
v_{X_{C}} \\
v_{Y_{C}} \\
v_{X_{D}} \\
v_{Y_{D}}
\end{array}\right]=\left[\begin{array}{r}
-0.0017 \\
0.0012 \\
-0.0017 \\
0.0012 \\
0.0017 \\
-0.0012 \\
0.0017 \\
-0.0012
\end{array}\right]
$$

2D Affine Coordinate Transformation

> Sol:

$$
\begin{aligned}
& X_{1}=-115.270+(0.999694)(206.674)+(0.001256)(123.794)=91.496 \\
& Y_{1}=-129.479+(-0.000800)(206.674)+(0.999742)(123.794)=-5.882 \\
& X_{2}=-115.270+(0.999694)(198.365)+(0.001256)(132.856)=83.201 \\
& Y_{2}=-129.479+(-0.000800)(198.365)+(0.999742)(132.856)=3.184 \\
& X_{3}=-115.270+(0.999694)(91.505)+(0.001256)(18.956)=-23.769 \\
& Y_{3}=-129.479+(-0.000800)(91.505)+(0.999742)(18.956)=-110.601
\end{aligned}
$$

Supplementary files:

> https://www.youtube.com/watch?v=-usT7TBErB0
> https://www.youtube.com/watch?v=W_Vee4b 40Q\&list=PL_7JGdDHiQ2IkQcdPq_Ndj4s0jD7ZAUrv
> Elements of Photogrammetry with Applications in GIS, Fourth Edition. Paul R. Wolf, Bon A. Dewitt, Benjamin E. Wilkinson, 2014 McGraw-Hill Education
Please don't use this presentation without getting a permeation from its original owner
Thanks

Dr.Eng. Hassan Mohamed

